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Abstract
In many applications related to melting or solidification phenomena in phase-change materials it is important to know accurately the position of the solid-liquid interface (the ‘free boundary’) s(t), as it evolves in time 
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 This gives rise to two problems: 

Direct Stefan Problem requires finding the temperature 
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 and the interface 
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 satisfying the heat equation
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subject to the initial condition
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 the Neumann boundary condition
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and the boundary conditions on the moving interface 
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In eqn.(1), all the constant thermal properties, e.g. density, specific heat, thermal conductivity have been eliminated by suitably scaling the variables. Equation (4) expresses that the moving boundary is an isotherm, whilst eqn.(5) is the Stefan condition. Equation (2) can be replaced by the Dirichlet boundary condition
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The one-phase classical Stefan direct problem (1)-(5), under appropriate assumptions on the data, is well-posed, i.e. it has a unique solution which depends continuously on the data [1]. 

Inverse Boundary Stefan Problem requires finding the temperature u(x,t) and the interface s(t) satisfying eqns.(1)-(4) and (6). In contrast to the direct problem, this inverse problem is ill-posed, so regularization methods must be applied to obtain a stable numerical solution [2].


In this study we are interested in solving the so-called Inverse Stefan Problem (ISP), [3,4], given by eqns.(1), (2), (4) and (5), when the interface s(t) is assumed known. Problems in which the position of the moving interface is known in advance are called design moving boundary problems [5]. Equations (4) and (5) can be replaced by the more general Cauchy boundary conditions
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The ISP can be interpreted as a noncharacteristic Cauchy problem if the initial temperature condition (2) is disregarded. It is well-known that this latter non-characteristic Cauchy problem given by eqns.(1) and (7) is ill-posed [6]. Coming back to the ISP given by eqns.(1), (2) and (7), one can observe that this consists in finding the temperature f(t) and the heat flux g(t) history at the fixed boundary x=0. This problem can immediately be reinterpreted in terms of the “backward in space” inverse heat conduction problem with an “initial” transient boundary [7]. Consequently, the ISP is an ill-posed problem with respect to perturbations in the input data (7), and special techniques are needed to restore some type of stability.


In this study, we shall consider the implementation of the method of fundamental solutions (MFS), developed in [8] for the inverse boundary Stefan problem (1)-(4), (6) and in [9] for the direct Stefan problem (1)-(5), combined with the Tikhonov regularization for solving the ISP problem (1), (2) and (7). 
At the conference, the numerical results obtained by the proposed MFS regularization technique will be compared with the mollification method results of [7]. 
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